Thermal assembly of a biomimetic mineral/collagen composite.
نویسندگان
چکیده
A strategy is described for exploiting temperature driven self-assembly of collagen and thermally triggered liposome mineralization to form a mineralized collagen composite from an injectable precursor fluid. Optical density and rheological experiments demonstrated the formation of a collagen gel when acid-soluble type I collagen solutions (1-7 mg/ml) were heated to 24-30 degrees C. Scanning calorimetry experiments demonstrated that mixtures of calcium- and phosphate-loaded liposomes composed of dipalmitoylphosphatidylcholine (90 mol%) and dimyristoylphosphatidylcholine (10 mol%) were stable at room temperature but formed calcium phosphate mineral when heated above 35 degrees C, a consequence of the release of entrapped salts at the lipid chain melting transition. The formation of calcium phosphate mineral induced by triggered release of calcium and phosphate was detected as an endothermic transition (deltaH=6.2+/-1.1 kcal/mol lipid) near the lipid chain melting transition (Tm=37 degrees C). Combining an acid-soluble collagen solution with calcium- and phosphate-loaded liposomes resulted in a liposome/collagen precursor fluid, which when heated from room temperature to 37 degrees C formed a mineralized collagen gel. The dynamic storage modulus of the collagen scaffold increased upon mineralization, and direct nucleation of mineral from the collagen scaffold was detected by electron microscopy.
منابع مشابه
In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials.
Bone is an organic-inorganic composite which has hierarchical structuring that leads to high strength and toughness. The nanostructure of bone consists of nanocrystals of hydroxyapatite embedded and aligned within the interstices of collagen fibrils. This unique nanostructure leads to exceptional properties, both mechanical and biological, making it difficult to emulate bone properties without ...
متن کاملPLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity
Novel scaffolds composed of poly(L-lactic acid) (PLLA) skeleton covered with bonelike apatite or apatite/collagen composite were produced via a combined phase-separation technique and an accelerated biomimetic coating process. Saos-2 osteoblast-like cells were used to evaluate the cellular behaviors on these biomimetic coatings. Cell morphologies on the surfaces of PLLA scaffolds, PLLA scaffold...
متن کاملA Novel HA/β-TCP-Collagen Composite Enhanced New Bone Formation for Dental Extraction Socket Preservation in Beagle Dogs
Past studies in humans have demonstrated horizontal and vertical bone loss after six months following tooth extraction. Many biomaterials have been developed to preserve bone volume after tooth extraction. Type I collagen serves as an excellent delivery system for growth factors and promotes angiogenesis. Calcium phosphate ceramics have also been investigated because their mineral chemistry res...
متن کاملCollagen as a scaffold for biomimetic mineralization of vertebrate tissues
Collagen is a well known protein component that has the capacity to mineralize in a variety of vertebrate tissues. In its mineralized form, collagen potentially can be utilized as a biomimetic material for a variety of applications, including, for example, the augmentation and repair of damaged, congenitally defective, diseased or otherwise impaired calcified tissues such as bone and cartilage....
متن کاملBiomimetics of Bone Implants: The Regenerative Road
The current strategies for healing bone defects are numerous and varied. At the core of each bone healing therapy is a biomimetic mechanism, which works to enhance bone growth. These range from porous scaffolds, bone mineral usage, collagen, and glycosaminoglycan substitutes to transplanted cell populations. Bone defects face a range of difficulty in their healing, given the composite of dense ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 24 26 شماره
صفحات -
تاریخ انتشار 2003